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Abstract—Hollow elastic cylinders containing moderately eccentric holes subjected to internal
pressures are analyzed by means of a perturbation method. Using the eccentricity as the perturbation
parameter. results are obtained by means of a sequence of directly derivable solutions for an
equivalent perturbed concentric domain subjected to appropriate boundary tractions. The latter
may be considered as corrective tractions which are required to satisfy the boundary conditions of
the actual domain. Expressions for the stress field are estublished. Numerical results for the effect
of eccentricity are presented for the stresses at the critical section and stress amplification Factors
arc obtained. From a comparison of the results for the maximum stress components with an exact
solution previously derived, it is seen that the method of Equivalent Perturbed Domains leads to
accurate solutions for small to moderate eceentricitics.

[, INTRODUCTION

Among the component parts of nuclear reactors, there exist thick-wall pipes containing
fluids under pressure and high temperatures. Tt is known that the pipes, which initially have
thick walls, arc subject to considerable crosion. Due to an uncven erosion, these walls
become much thinner over the years and the internal boundary, initially concentric, can
become eccentric. High stresses, induced in the weakened walls, thus endanger the entire
structure. In order to obtain the stress ficlds in the changed configuration, one must analyze
the cylinder as an eccentric Lamé problem.

A complete solution to this problem, given by Jeflery (1921) and referenced in Timoshenko
and Goodicr (1970), was obtained using bipolar coordinates. However, using such u co-
ordinate system, the solution yiclds stress components whose orientations are in directions
which themselves are dependent on the given eccentricity. While this may not pose i severe
problem, the results thus obtained lead to some difficulty in the physical interpretation of
the stress ficlds.

If the eccentricity of the internal hole is not large, it is then possible to analyze the
problem by means of perturbution techniques which lead to relatively simple solutions.
Such an analysis is considered below, based on a higher-order Boundary Perturbation
Method developed by Parncs and Beltzer (1986). This method. when developed to second-
order, has been shown by Parncs (1987) to yield results of great accuracy even for relatively
moderate ceeentricities. In the following investigation we extend the method to a Mcthod
of Equivalent Perturbed Domuains and apply it using i third-order scheme. The stress
ficlds with respect to the original polir coordinate system are then calculated for various
cccentricities and ratios of inner to outer radius and are presented in graphical form.
The maximum stresses obtained from the method of Equivalent Perturbed Domains are
compared with the results given by Jetfery and arc seen to be highly accurate for moderate
ceeentricitics.

It thus appears that the method of Equivalent Perturbed Domains as developed in this
paper can lead to solutions for other problems which may prove intractable when using
bipolar coordinates.

2. GENERAL FORMULATION

We consider an elastic thick wall cylinder in a domain Q, bounded by a circle C, of
radius a with center 0, the origin of an (7, §) polar coordinate system. The cylinder contains
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Fig. |. Geometry of the problem.

a circular hole C, of radius b, whose center 0 has an eccentricity with respect to 0 given by
I For b < a and ! < a, we define the non-dimensional parameters

y=bla, n=1la (la.b)
with
y+n < L. (lc)

An internal pressure p is assumed to act along the surface C, (Fig. 1).
Denoting the stress components in this coordinate system by G,(7, §), the problem is
governed by a bi-harmonic equation on the Airy Stress function ®(7, ),

Vi@, 0) =0 2)

subject to a traction-free surface Cy and a pressure p on C,. We consider here the case of a
circular hole with small to moderate eccentricitics which permits a treatment of the problem
by means of a perturbation scheme.

A sceond coordinate system (r, 0) is first established with center at 0. If the cceentricity
parameter # is sufficiently small, we may then, following the development of Parnes and
Beltzer (1986), consider the boundary surfuce C, to be a perturbation of a circle C, of
radius g, and with center 0. The boundary C, thus defines a domain Q, with points P, on
C, being mappings of points P, on C, (Fig. 2). It is noted that C, is then a curve with
varying radial distance ry from 0; i.e., ry = ro(0). Symbolically, the perturbed relation
C,— C, is written as

a—ry=ro(a,,n) 3)
with rgl, .o = a.

We now extend the function analytically and assume that the governing equation is
valid in the domain Q, U Q,. Defining the non-dimensional coordinates

Fig. 2. Perturbation of the gecometry.
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Fig. 3. Coordinate systems.

p=Fua, p=rla, (4a.b)
the problem is then governed by the equation
Vid(p.0) =0, (5)
subject to the traction-free boundary condition on C,
T(ro ) =0, (6)
and to the following conditions on C,:
6, (7.0 = —p, o..(y.0) =0, {7a.b)

Denoting unit vectors in the (7, 0) and (r, 0) systems by (e, ¢5) and (e,. ¢,) respectively
(Fig. 3),

e, = Cos fie, —sin fle, (8a)
e; = sin fle, +cos fe, (8b)

where
f=0-0. 9

Noting the stress tensor in the (r, ) system,

T = [arrcrcr Urlleretl] (IO)

Gy €€, TpuCy€y

the traction ’i" on the surface C, is given by
T =1 (1)
Substituting eqn (8),
'i‘ {ro.th = ';:', e+ ;T,, [ (12)

i i
where the components 7, and T, are given by
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f‘, =06,C0s f—a,ysinf|c, (13a)
To = 6,4c08 B~y sin Bl .. (13b)

Ti'he problem is therefore specified by eqn (5) and the conditions eqns (6) and (7) where
T|, is defined by the components of eqns (13).

Following the perturbation scheme, the stress function ®(r, 6) is expanded in powers
of the eccentricity n7; i.e., we let

~
0(!‘,9) = Q(O)+n®(!)+'32®(2}+Q,‘¢(31+. e = Z qkwlk){r‘g) (l4)
k=0

where N is the order of the scheme. The corresponding stresses o,,(r, 8) are assumed to be
expandable as

h
0,(r.0) = o) +ncl’+-- =Y nai(r,0) (15)
k=10

where (Fung, 1965)

Foow 1 aiow

ey o D27 4 T T @
T r Or +r: a0° (162)
TRt
o 7
o = p (16b)
d (1 dp®
w . YL .
r or (l’ 20 )- (‘6(.)
Using the linearity property of the system, egns (5)-(7) are satisfied by setting
V4o, 0) =0, k=0,1,2,....N n
subject to the following conditions:
Fork =10
oP(1.0) = ~p, alP(1.0)=0 (18a,b)
%‘r (rl)» 9) = 5"()(7‘0, 8} = 0. (ISC, d)
Fork>=1:
ol (1.0) = al(7.0) =0 (19a.b)
‘;’r (rO' 0) = %0("0. 0) = 0- (‘9(:. d)

We observe that the boundary conditions of eqns (18¢c,d) and (19¢, d) are specified on
the contour C, described by the parametric relation of the form given by eqn (3). Solutions
of the system of equations (17)~(19) require that the conditions of eqns (18¢,d), (19¢,d)
be expressed along the coordinate surface C, ; i.e. we require boundary conditions for the
equivalent domain Q,. These are obtained in the following section where, upon establishing
the appropriate geometric relations and expansions, the explicit equivalent boundary condi-
tions are derived.
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3. GEOMETRIC RELATIONS AND EXPLICIT PERTURBATION EXPRESSIONS

As discussed above, we obtain solutions to the problem posed in the domain €, as a
perturbed solution in the domain Q,. More specifically, we consider functions, and in
particular the boundary conditions at a point Py(r = ry. 6) on C, as perturbed values of
the functions at P,(r = a, 6) on C, (Fig. 2). Noting that P, and P, possess the same
coordinate 8, analytic functions f(r. ) may be expanded about the point P, by means of
a Taylor sertes,

f|(‘., = f(re.9) =f(a’6)+f"(a'9)'(’0’3)+§f.,,(a,6)-(rnw_a)1
+ %frrr(a- 9) * (ro —a)! 4o (20).'.

We note that here f(ry, ) may represent either of the traction components f‘, or 5"9.
given by eqns (13). which are seen to be also dependent on § = 8 —#. Before proceeding,
we require explicit geometric expressions and expansions relating the two coordinate
systems. In what follows below, all expressions will be expanded, unless otherwise noted.
up to third order, N = 3.

3.1. Geometric relations
From Fig. 3, and the definition of eqns (4), the exact relations

p=1[p*+2coslpn+n?)'"? (21a)
. n.
sinfl = ;3 sin( (21b)
are noted, from which it follows that
1
cosfi = ;} (p +ncosl). (2lc)
For n/p « 1, expansions in powers of n/p up to order N = 3 yield
= sin®0 o, | c2p3) 03 4
p=p| L +cosn/p+ 5 [p*— icosﬂsm on’/p’ 1+0(nY) (22a)

as well as its reciprocal

% = é [i —cosOnfp+ %(2 cos? O —sin’ O)n?jp* + %cos 6(3sin’ 8~ 2cos? B)n‘/p’]+0(n‘).
(22b)
Hence
cosf = | —}sin?On’/p* +cosBsin?On’/p*+0(n*) (23a)
sin f = sin0{n/p—cos On*/p* + 4(3cos? 80— 1)n’/p’1 +O(n*). (23b)

In addition, we note, upon setting § = 1(F = a), that eqn (2la) leads to the exact
relation

Plc, = rofa= —ncos@+[l —n?sin’4]"* (24)

t Here, and in all subsequent expressions, derivatives with respect to a variable are denoted by a subscript
preceded by a comma; e.g., [, = df/dr, etc.
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whose expansion for 7 « | becomes

N

v
rolB)'a = 1 —cosn— =2 p? + 0(n) (25a)
from which

Ty

o

l ~ * K}
[l+cosf)q+ ;(l+cos'9)q“+cosﬂn‘]+0{q‘). (25b)

Equations (25) are thus the parametric representation of the curve C, represented
symbolically by eqn (3). [t is observed here that the expressions (22) and (23) are expressed
in terms of the (r, 0) system.

3.2, Perturbation expressions

The equivalent traction components on the boundary C, are obtained by substituting
eqns (23) in the expressions for T.and T, given by eqn (13), expanding according to eqn
(20) and making use of eqn (25). Performing these operations and collecting in powers of
n yields. for the components f, (j=r.0):

! I ¥ k) [
T(ry.h =0, —{(acosla, +sinla, )+ - [a~cos” Oa,,,, ~sin” Hao,,, +06,)

, | a -
+asin20a,,, 0"+ 5 {a cos 1)[ 3 cos’ e, ., +sin” Hao,,,, +0',,~,)]

+sinOfcos® 036y, —a’6y,,,) +sin’ Huo,,, — m,,)}}:y" +0(n"). (26)

Finally, substituting the perturbation expuansion, egn (15), for the stress components
o, and again collecting in powers of 5 leads, for j = r, 8, to the following expression:

T{rs.0) = Uﬁ;’)k; +[a!) +,Z(|m]cj,’7+ [5:;:’ +;X{!“ '*',X(:m]t;,’lz

+[atjn+j£‘lz’+jz(2”+;Z<3m]('d'l‘ (27)
where the functions ,Zi' (= 1,2,3:k =0, 1, 2), evaluated along C,, i.e. for p = |, are

2 = ~[as,,, cos 0+ 0y, sing]"*' (284)

¥ = {[a*(1 +cos 2)a,,,, — (1 —cos 20)(ao,,, +0,;) + 2asin 20a,,,]* (28b)

E = L [=a'(3cos0+cos Ia,, .. + 3a(cos O —cos 30)(ao,;,, +5,,,)

—3a*(sin0+sin 30)6,,,, + 3a(3sin 0 —sin 30)a,;, 1. (28c)

The bracketed terms [...]"" appearing above denote that the combinations of stress com-

ponents and their derivatives contained within, refer to i}’

Notingineachcase,k = 0, 1, 2. 3, that the required boundary conditions are, according
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to eqns (18c,d) and (19¢,d). 7'",(ro.6) = 0, these conditions are satisfied by setting the
coefficients of n, appearing for all arbitrary n in eqn (27), to zero.

Thus, to summarize the scheme explicitly, the perturbation solution is obtained accord-
ing to eqns (17)-(19). from solutions to the following sequence of problems:

k=0:
Vi =0 (29)
o, (7.0) = —p, ¢3'(;,0)=0 (30a,b)
al(1.0) = a''(1,0) = 0 (30c.d)
k=1
Vi =0 (30
o, (7.0) = o\ (7.0) = 0 (32a,b)
where for
k=1:
a(1.0) = = Z", o(1,0) = —,Z” (33a.b)
k=2
o (1L0) = [ Z{" + ¢
o (1,0) = —[,Z" +,ZV] (34a.b)
k=3:

o (L) = = [ + 24 + 2]
o0 (1,0) = — [T +,Z5 +,Z). (35a,b)
Euach of the above cases represents an auxiliary problem whose solution yields stresses

within the domain Q,, and by analytic extension within the domain Q, w €,.. The total stress
solution is then given by eqn (15).

4. PERTURBED SOLUTIONS

From the previous section, we observe that the case k = 0 represents a cylinder with
a traction-free outer surface C, of radius ¢ containing a concentric hole C, of radius b
subjected to an internal pressure p (Fig. 4a). On the other hand, cases & > 0 describe the

(a)

O "0} cosk@ , T, =T sinkd

k=0 k>0
Fig. 4. Loadings of the equivalent domains, k > 0.
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same cvlindrical tube with a traction-free interior surface C,, but subjected to tractions
acting on the outer surfuce C, given by eqns {33)-(33). The loadings for & > 0 may thus
be considered as corrective tractions acting on the equivalent domain Q, which are required
to correct the solution for the original cylinder lying in the domain Q, and containing the
eccentric hole. These correc{ive extema! tractions, for the cases K > O are seen. according

(Fig. 4b). The gr.ncml solution to these .1ux1har_\ problcmn 15 dc.rm.d in the Appcndlx.
We proceed now to the required specific solution for each of the cuses & = 0. 1, 2, 3.

4.1. The k = 0 case
As noted above. this case, governed by eqns (29) and (30). is recognized as the classical
Lameé problem of a hollow tube subjected to an internal pressure, whose solution is (Lamé,

1852)
oy __ !1 *L — .
ol = D(p: l) {36a)
1
aly) =0 (361)
where
|
D= ,—1 {37)
v
with v defined by eqn (1a).
4.2. The k = | case
This case is ;,murmd according to eqn (31) by the bi-harmonic equation Vit = 0

with vanishing traction T, #) = 0 on r = h. Substituting the stresses ), (1.0) on C, given
by eqns (36) in the remaining boundary conditions, eqn (33), the explictt foading for this
case becomes

"[)
(H . ‘; R
le, = D cosf) (38a)
1 2p
o, = T sin 8. (38b)

The general solution to this external loading case is given in Section A2 of the Appendix.
Hence, setting of = 2p/ D, the stresses o))" are, from eqn (A16),

2
p.0) = f’,v ~5(p*~7") cos (392)

aw (p.0) = B \(31’ +7*)cos 0 (39b)
1y 2[) I dy v

g {(p. ) = 5{(_4);) ;o =7 ysinf. {35)

4.3. The k = 2 cuse

This case is governed by the bi-harmonic equation on ©'% where again the traction on
the surface C; is zero. The applied traction on C,, obtained from the equivalent boundary
conditions, cqns (34). vields. upon substitution of eqns (36) and (39). the explicit loading
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o\, = D(lp [4+(37*+ 1) cos 28] (40a)

4
)c D(I )(S+3/ ) sin 26. (40b)

General solutions for these cases are given in the Appendix, Sections Al and A3.
Hence. letting

op= P __ (41a)
P D=7)
and
L G Ebp 5+
G:_D(l—'y"), r:—w (4|b.C)

in eqns (A4) and (A19) respectively, the stresses, after simple algebraic manipulations, are
readily evaluated :

l..] P ¥ - _ — N
T = D=~ {407 (" =) +[Gy" + Dp* = 47707 + 371 (1 =y cos 205 (42a)
I —-(3: _ 20} )
T (R 4 (P9 +(120° = G + Dp* = 3y* (1 =y)] cos 20} (42b)
ali = 4 16p* = (377 + Dp* =277 p  + 3y* (1 =)} sin 20, (42¢)

D(I =3 )(l 70’

4.4 The k = 3 case

Proceeding as in the previous cases £ = | and 2, we note that this case corresponds to
a cylinder, traction-free along the boundury C; and subjected to an external loading on C,
given by egns (35). Substituting eqns (36), (39) and (42) these become:

2
0. = o {3(1 +97) cOs 04+ (2y° = 27* + 3y* — 1) cos 30 43;
le, = 1?4“”2){ (1+y°)cos 0+ (2y* ~2y* + 3y’ — 1) cos 30} (43a)
olb 3p
a'lc, = 5y <{2sin 0+ (y* —~2y*+3)sin 30}. (43b)
Hence, setting
6p
ot=1l= Y (44a)
2227+ 37 = 1)p 3(° =2 +3)p
* x _
o3 DT , = wD’ 3 (44b.c)
in the Appendix. and using eqns (A 16) and (A[8), the stresses are given by
r
o = ?(p"——7‘)cosO—2(3A,p+ZB,p3+6C;/p5+50;/p’)cos 30 (45a)

r -
oy = s (3p* +7*)cos0+2(3A4;p+10B,p> +6C,3/p° + D,/p*) cos 30 (45b)
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r
¢} = P (p*—7*)ysin0+6(Ad:p+2B,p*~2C;/p° —D,/p>)sin 36 (45c¢)

where the constants, according to eqns (A20) and (A21), are as follows:

Ay = 3o+ 1T 487 4 1) (46a)
B. = P W 4‘,2 i 46b
3= —TD:(' +4y+1) (46b)

C - p.l'ﬁ w6 3 Y, ?‘2 3 46

D, = I’"/d o4 4,2 1 46d
y= = e+ (46d)

In the above,
6p

r K= =Dt 44+ DD (47a,b)

D= =Yy

5. TOTAL SOLUTION AND TRANSFORMATIONS

We denote, for convenience, the stresses o,(r, ) and the perturbation stresses
B (r, 0) respectively, by means of the vectors

{
[

a, ol
{o} =< aw p, {69} =< o . (48a, b)
Gy (T,(,I:,)

The stress solution for the third order scheme is then, from eqn (15), written as
3
{o} = {o"}+n{o' "} +0* (e} + 0 {6V} = } ¥ {o"] (49)
k=i

where {a™}, k =0, 1, 2, 3, are given respectively by eqns (36), (39), (42) and (45). It is
observed that the above quantities are expressed as functions of (r, 8).

Stress components (6., 044, 6:5) May be obtained by means of the stress transformation
laws. Denoting these components by means of the vector

G
{6 } = 055 - (50}
Oy
the transformation law may be written as follows:

{6} ={Al{o} (Y

where [A]. the transformation matrix, is
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cos’f sin’f ~2sinfcosf

[A] = sin’ B cos’ B 2sin fcos B (52
sinfcosp —sinfcosf cos’f—sin’p

and where the trigonometric coefficients are readily obtained from eqns (21). Expressed in
this way, the stress components of {G} with respect to the (7. ) system are given at field
points defined by the (r. 8) coordinates. In order to express {G} in the (7. §) system. it is
necessary to use the inverse relations of eqns (21).

Noting that (Fig. 3)

p = [p*~2cosfpn+n}"? (53a)
and using eqn (21)
sin (0—0) = —gsin 0 (53b)
and the trigonometric relation
=tan~"' _,._S_IE?:__“ 1
0 = tan l:cos 7 r1//7:|' (53¢)
onc obtains
. gsind peos—n
sinf =~ | cosl="-—— .- S4a.b
p(p.0) p(.0) ( )

where p = p(j, ) is given by eqn (53a). One can then readily obtain the relations

sin{J _p—ncosl

sinfl = nl—;(—p—-g). cosfl = 7;(;;0.)—— (55a,b)

The coefficients appearing in the transformation matrix [A] of eqn (52) are then readily
expressed in the (7, J) system.

6. NUMERICAL RESULTS AND CONCLUSIONS

Stress components were calculated using the expressions of Section 4 and eqns (49}~
(55). In order to verify the accuracy, numerical tests, consisting of the verification of the
overall equilibrium of the upper portion of the tube (0 < § < 1) were performed. The tests
showed the estimated accuracy of the resulting stresses to be of the order of 10% for
perturbation values n < 0.3.

Results for the stress components oyy are presented for points along the critical section,
namely the x-axis (Fig. 1), for various values of y and n.

The variation of the stresses g55 with x for typical valuesof 7, y =03 and y = 0.5, is
shown in Fig. § for several eccentricities: n =0, 0.1, 0.15, 0.2, 0.25.

As in the classical Lamé problem of the concentric tube, for a given hole of radius
b = ya, one observes that the maximum stress occurs on the internal boundary, C,. For the
eccentric problem at hand this maximum occurs at the point on C, x,, = b+{ = (y+1a.
which is located closest to the external boundary, that is, at the point adjacent to the
smallest wall thickness.

Using eqns (36)-(47) and (15), the maximum stress at this point (p =17y, § =0) is
given by
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3@ L. (a) y=03 J

x/a
Fig. 5. Variation of the o4 stresses along the v-uxis,
o 1+’ 8y 40+37y 0 16
_g.” o e ,{J; A,._‘.«“.S.n/m...v.A-N_,I . ,, + - (._ ."‘.{_)./__;_ 'l' -+ _.—_~{_5_j '1}‘ (56)
poo =7 (=)A= A=y (+y7) (=79

Upon expanding to third order the exact expression for the maximum stress at this
point, as given by Jeffery (1921),

Eﬂz 2(l+72"2?”—"12) -1 (57)1.
p o (YO0~ =2m—n®)
we recover eqn (56} identically.?

A numerical comparison of the equivalent perturbed domain results given by eqn (56),
Oepa- With the exact results of eqn (57), shown in Table |, yiclds a measure of the accuracy
of the Equivalent Perturbed Domain method as developed here. We observe that the
percentage error increases for larger values of ¥ and, as expected, increases with greater
eccentricities. Nevertheless, we may note that for moderate eccentricities, e.g. 5 < 0.3, the
error remains within 13%. (This is consistent with the estimated order of accuracy from
the overall equilibrium test as mentioned above.)

The maximum values of o4 at the point x,, are shown in Fig. 6 as a function of 7 for
several eccentricitics. One may note that the effect of the eccentricity # on the maximum

+ The original equation as given by Jeffery (1921) is written here using the notation of the present paper.
$ In a sense this provides a check on the expressions given in Section 4.



The eccentric Lamé problem 1617

Table |
n Oera Gepd % error
7 =01 0.10 1.021 1.029 0.71
0.20 1.024 1.038 1.41
0.30 1.027 1.049 2.08
y=02 0.10 1.092 L1119 245
0.20 1.106 1.159 4.79
0.30 1.128 1.205 6.83
y =03 0.10 1.228 1.284 4.56
0.20 1.275 1.386 8.65
0.30 1.351 1.506 1.5
=04 0.10 1.460 1.5558 6.50
0.20 1.586 1.771 1.7
0.30 1.806 2.043 13.1

. I . | N
0 0.2 0.3 06

Y b/

Fig. 6. Muximum a,; stresses at X, as a function of y.

value increases rapidly with increased values of y. This same effect is noted in Fig. 7 where
the variation of (647)m. 18 presented as a function of n for a family of curves ;.

Curves showing the stress amplification fuctor, 655(x,,)/655(x)|, - o as 2 function of the
eccentricity n and hole size 7 are presented in Fig. 8a,b. Itis readily noted that the maximum
stress increases by 20% in comparison to the concentric case for a hole with value y = 0.6
which is eccentric by / = 0.1a. However, for this same hole, the maximum stresses increases
by 200% when the eccentricity reaches / = 0.3¢. One may conclude, using a simple physical
reasoning, that for increasing values of x,,/a = 7+ 4. the stresses increase continuously and
thatas x,/Ja = 1, g5 — .

[tis evident that the perturbation method used in this investigation cannot be expected
to lead to accurate results for large eccentricities. Nevertheless, within the limited range of
moderate eccentricitics, the solutions obtained by the Mcthod of Equivalent Domains yield
reasonably accurate quantitative results for the effect of eccentricities on the stresses for
various cylindrical geometries. It may be expected that the application of the method to
other problems will yield solutions of similar accuracy.
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APPENDIX : AUXILIARY PROBLEM SOLUTIONS—HOLLOW CYLINDER SUBJECTED TO
0-DEPENDENT EXTERNAL TRACTIONS

We obtain the solutions to the required auxiliarv problems : concentric hollow cvlinders (with inner and outer
rudu b and u respectively ;b = yu: 7 < 1), subgected to external cosinusordal and sinusowdal loadings on the outer
surface C, (Fig. 4b).

The stresses can be obtained trom the Airy stress function ¢"'(r, ¥) satistying the bi-harmonic equation

Vio"(r.0). n>0 (AD)

and subject to the conditions
6.lc, = 0l =0, (Ala.b)
O.lc, = atcosnd. a,lc, =tsinn. n20 (A3, b)

where o7 and t7are known quantities. The resulting stress components are then given by eqns (16).
Al.Casen=10

This case represents the classical Lamé problem of a hollow concentric cylinder subjected to an axisymmetric
external loading a,,lc. = a3, whose solution is (Lamé, 1852)

-
a,

w 1_,? ,

¢, = mzp:(p 77) (Ada)
. ay g

o = b,--:';ﬂ (03 +77) (Adb)

aly) = (Ade)

where D is defined by eqn (37), and where p = rfa.
The cases n = | and n > 1 require a separate treatment.

A2. Casen =1

It is first observed that overall equilibrium counsiderations of the cylinder lead to the requirement 6f = t¥in
egns (A3). Consistent with the boundary conditions of ¢qns (A2) and (A3), ®'"(r, #) admits a solution of the
form

A
O, 0) = rUsin O+(a,r+A,jr+ B,r'+brlogr)cos?. (AS)
Substituting in egns (16)
w4 '
ol = —;cos0+(—2A./r‘ +2B,r+b,/r)cost (A6a)
aby = (2A,/r* +68,r+b,/r)cosl (A6b)
a'y = (=24,/r' +2B,r+b,/r)sin 0. (A6c)

Equations (A2a, b) then lead respectively to

2

jl_hf‘4l+2b28|+bl=0 (ATa)
b
- };-}A.+2h’B, +b, =0. (ATb)

Hence 4, = 0. Noting too that the g, term does not contribute to the stresses, we set @, = 0.
Substitution of the boundary conditions, eqns (A3, b), with the above-mentioned requirement (6t = t}),
yields the identical equation

b
—2A./’u‘+2B.a+-a—' =o?. (A8)

It is noted that cgns (A7b) and (A8) contain three unknown constants. However, it is now shown that the
b, term leads to multivalued displacements. Substituting in the stress-strain relations, e.g.. in the case of plane
stress, the b, term yiclds

1 b
b = (7 = V) = E:_(l —v)cos0 (A9a)

| b
fw = p(Om—v0,) = E_'|; (1—-v)cos® (A9b)
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1+v .
e,a=—E—d,o=E'r(l+v)sm6)

where £ is the modulus and v Poisson’s ratio of the material. Hence

b
u, = je,,(r.())dr = —El(l—v) logrcos 0+ f(9).

From the relation

éu b .
-6-60 = rEgy—Uu, = —L-_l-(l—v)([-]OgF)COS”~f(9).

it follows that

b
Uy = E'(l —~v)(l—logr) sino_ff(a) do+g(r).

Now. stnce

‘I lDu,+Eu‘, Un
8'"—2 rée T e )

we obtain, using eqns (A9¢c). (A10a) and (A10c). the resulting relation

4h,
l+jf(0)d0+rdz(r) ~g(n = —sin0,

which can be satistied for all r and 0, only if

ah
4 +ff(0)d() = -Fm‘smo
and
dq(

i —g(r) = 0.

The solution to eyn (Al3a) being

2h,
f(0) = Asin0+ Beos 0 + F ' ¢sin 0,

{AY9¢)

(Alba)

(A0b)

(Al0c)

(Al1)

(AlD)

(Al3a)

(A13b)

(Al4)

we observe, from eyns (A, 10a, ¢), that values b, # 0 necessarily lead to multi-valued displacements, We therefore

set by = 0.
The remaining constants A, and B, are then readily obtained from egns (A7a) uand (A8):
PR .
2D +y°%) 20(1 +77)u

where use has now been made of eqn (37).
Substitution in eqns (A6) then yields

o (p.0) = m(p ¥ cosd
o' (p.0) = D——y_(-ia:-_-:ﬁup +7*)cost
aly'(p.0) = i*r-(p‘—',")sin(l.

Dy} (1+7%)p’

A3. Cusesn 22
The solution ®'' of eqn (A1) may be taken in the form

O"(r,0) = (A, + B, +C,/r"+D,jr"~*)cosnt.
Substituting in eqns (17),

o = [—n(n—=DA" " =P —n—=2)B,”" —n(n+ DHC,r~"" = (n*+n—2)D,r "] cosnd)
o = fn(n=1)A,P  + 1+ 2)(n+ 1)B,r" +n(n+ 1)Cor~" "> +(n—1)(n~2)D,r "] cos nf)
o7 =nalin— DA, 4+ )B," —(n+1)Cor=""  —(n=1)D,r "] sinnf.

{Al15a,b)

(Al6a)

(A16b)

(Al6c)

(A7)

(Al8a)
(A18b)
(A18c)
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For n = 2, substitution in the boundary conditions, eqns (A2) and (A3). leads to evaluation of the four constants ;

omitting the algebraic details, these become :

A;= 1% (27 477+ Dot =21

B, = —.—I——T[—(3}':+l)a‘~+(37:—l)r!]
o6y —=1)ya ‘ -
wd, 4
C:= (—’(—_’ﬁ—g—m[(y#})o?—l‘,‘r?]
D= ~ 5 (G 7 Dot = + el

For the case n = 3. the following constants are similarly obtained :

I . R
A, = W[3(37"+7‘+7~+ Do+ (=97 +7 +7"+ DY
l . .
B,=~ g‘é‘? {4 +7° + Dot - (@' =7 =~ DY)
.’,bas . .
C,=- qé[—l(',"#/' +d)at+ (57 + 577 )Y
w3

Dy = - LA R+ 6T+ DG + DIt + 2= (7 + DG+ D]et)

40
where

Q=G0+ + 1)

SAS 27:13-8

(Al%9a)

(A19b)

(A19¢)

(A19d)

(A20a)

(A20b)

(A20c)

(A20d)

(AZD)



